Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants.

Identifieur interne : 003532 ( Main/Exploration ); précédent : 003531; suivant : 003533

Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants.

Auteurs : Malona V. Alinsug [Taïwan] ; Chun-Wei Yu ; Keqiang Wu

Source :

RBID : pubmed:19327164

Descripteurs français

English descriptors

Abstract

BACKGROUND

Although histone deacetylases from model organisms have been previously identified, there is no clear basis for the classification of histone deacetylases under the RPD3/HDA1 superfamily, particularly on plants. Thus, this study aims to reconstruct a phylogenetic tree to determine evolutionary relationships between RPD3/HDA1 histone deacetylases from six different plants representing dicots with Arabidopsis thaliana, Populus trichocarpa, and Pinus taeda, monocots with Oryza sativa and Zea mays, and the lower plants with Physcomitrella patens.

RESULTS

Sixty two histone deacetylases of RPD3/HDA1 family from the six plant species were phylogenetically analyzed to determine corresponding orthologues. Three clusters were formed separating Class I, Class II, and Class IV. We have confirmed lower and higher plant orthologues for AtHDA8 and AtHDA14, classifying both genes as Class II histone deacetylases in addition to AtHDA5, AtHDA15, and AtHDA18. Since Class II histone deacetylases in other eukaryotes have been known to undergo nucleocytoplasmic transport, it remains unknown whether such functional regulation also happens in plants. Thus, bioinformatics studies using different programs and databases were conducted to predict their corresponding localization sites, nuclear export signal, nuclear localization signal, as well as expression patterns. We also found new conserved domains in most of the RPD3/HDA1 histone deacetylases which were similarly conserved in its corresponding orthologues. Assessing gene expression patterns using Genevestigator, it appears that RPD3/HDA1 histone deacetylases are expressed all throughout the plant parts and developmental stages of the plant.

CONCLUSION

The RPD3/HDA1 histone deacetylase family in plants is divided into three distinct groups namely, Class I, Class II, and Class IV suggesting functional diversification. Class II comprises not only AtHDA5, AtHDA15, and AtHDA18 but also includes AtHDA8 and AtHDA14. New conserved domains have also been identified in most of the RPD3/HDA1 family indicating further versatile roles other than histone deacetylation.


DOI: 10.1186/1471-2229-9-37
PubMed: 19327164
PubMed Central: PMC2671507


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants.</title>
<author>
<name sortKey="Alinsug, Malona V" sort="Alinsug, Malona V" uniqKey="Alinsug M" first="Malona V" last="Alinsug">Malona V. Alinsug</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan. malinsug@yahoo.com</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yu, Chun Wei" sort="Yu, Chun Wei" uniqKey="Yu C" first="Chun-Wei" last="Yu">Chun-Wei Yu</name>
</author>
<author>
<name sortKey="Wu, Keqiang" sort="Wu, Keqiang" uniqKey="Wu K" first="Keqiang" last="Wu">Keqiang Wu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19327164</idno>
<idno type="pmid">19327164</idno>
<idno type="doi">10.1186/1471-2229-9-37</idno>
<idno type="pmc">PMC2671507</idno>
<idno type="wicri:Area/Main/Corpus">003602</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003602</idno>
<idno type="wicri:Area/Main/Curation">003602</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003602</idno>
<idno type="wicri:Area/Main/Exploration">003602</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants.</title>
<author>
<name sortKey="Alinsug, Malona V" sort="Alinsug, Malona V" uniqKey="Alinsug M" first="Malona V" last="Alinsug">Malona V. Alinsug</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan. malinsug@yahoo.com</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yu, Chun Wei" sort="Yu, Chun Wei" uniqKey="Yu C" first="Chun-Wei" last="Yu">Chun-Wei Yu</name>
</author>
<author>
<name sortKey="Wu, Keqiang" sort="Wu, Keqiang" uniqKey="Wu K" first="Keqiang" last="Wu">Keqiang Wu</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computational Biology (MeSH)</term>
<term>Conserved Sequence (MeSH)</term>
<term>DNA, Plant (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Histone Deacetylases (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plants (enzymology)</term>
<term>Plants (genetics)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Biologie informatique (MeSH)</term>
<term>Histone deacetylases (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Plantes (enzymologie)</term>
<term>Plantes (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Séquence conservée (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
<term>Histone Deacetylases</term>
<term>Plant Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plants</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Histone deacetylases</term>
<term>Plantes</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines végétales</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computational Biology</term>
<term>Conserved Sequence</term>
<term>Evolution, Molecular</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Phylogeny</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de séquence d'ADN</term>
<term>Biologie informatique</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Séquence conservée</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Although histone deacetylases from model organisms have been previously identified, there is no clear basis for the classification of histone deacetylases under the RPD3/HDA1 superfamily, particularly on plants. Thus, this study aims to reconstruct a phylogenetic tree to determine evolutionary relationships between RPD3/HDA1 histone deacetylases from six different plants representing dicots with Arabidopsis thaliana, Populus trichocarpa, and Pinus taeda, monocots with Oryza sativa and Zea mays, and the lower plants with Physcomitrella patens.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Sixty two histone deacetylases of RPD3/HDA1 family from the six plant species were phylogenetically analyzed to determine corresponding orthologues. Three clusters were formed separating Class I, Class II, and Class IV. We have confirmed lower and higher plant orthologues for AtHDA8 and AtHDA14, classifying both genes as Class II histone deacetylases in addition to AtHDA5, AtHDA15, and AtHDA18. Since Class II histone deacetylases in other eukaryotes have been known to undergo nucleocytoplasmic transport, it remains unknown whether such functional regulation also happens in plants. Thus, bioinformatics studies using different programs and databases were conducted to predict their corresponding localization sites, nuclear export signal, nuclear localization signal, as well as expression patterns. We also found new conserved domains in most of the RPD3/HDA1 histone deacetylases which were similarly conserved in its corresponding orthologues. Assessing gene expression patterns using Genevestigator, it appears that RPD3/HDA1 histone deacetylases are expressed all throughout the plant parts and developmental stages of the plant.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The RPD3/HDA1 histone deacetylase family in plants is divided into three distinct groups namely, Class I, Class II, and Class IV suggesting functional diversification. Class II comprises not only AtHDA5, AtHDA15, and AtHDA18 but also includes AtHDA8 and AtHDA14. New conserved domains have also been identified in most of the RPD3/HDA1 family indicating further versatile roles other than histone deacetylation.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19327164</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>04</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<PubDate>
<Year>2009</Year>
<Month>Mar</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants.</ArticleTitle>
<Pagination>
<MedlinePgn>37</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-9-37</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Although histone deacetylases from model organisms have been previously identified, there is no clear basis for the classification of histone deacetylases under the RPD3/HDA1 superfamily, particularly on plants. Thus, this study aims to reconstruct a phylogenetic tree to determine evolutionary relationships between RPD3/HDA1 histone deacetylases from six different plants representing dicots with Arabidopsis thaliana, Populus trichocarpa, and Pinus taeda, monocots with Oryza sativa and Zea mays, and the lower plants with Physcomitrella patens.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Sixty two histone deacetylases of RPD3/HDA1 family from the six plant species were phylogenetically analyzed to determine corresponding orthologues. Three clusters were formed separating Class I, Class II, and Class IV. We have confirmed lower and higher plant orthologues for AtHDA8 and AtHDA14, classifying both genes as Class II histone deacetylases in addition to AtHDA5, AtHDA15, and AtHDA18. Since Class II histone deacetylases in other eukaryotes have been known to undergo nucleocytoplasmic transport, it remains unknown whether such functional regulation also happens in plants. Thus, bioinformatics studies using different programs and databases were conducted to predict their corresponding localization sites, nuclear export signal, nuclear localization signal, as well as expression patterns. We also found new conserved domains in most of the RPD3/HDA1 histone deacetylases which were similarly conserved in its corresponding orthologues. Assessing gene expression patterns using Genevestigator, it appears that RPD3/HDA1 histone deacetylases are expressed all throughout the plant parts and developmental stages of the plant.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The RPD3/HDA1 histone deacetylase family in plants is divided into three distinct groups namely, Class I, Class II, and Class IV suggesting functional diversification. Class II comprises not only AtHDA5, AtHDA15, and AtHDA18 but also includes AtHDA8 and AtHDA14. New conserved domains have also been identified in most of the RPD3/HDA1 family indicating further versatile roles other than histone deacetylation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Alinsug</LastName>
<ForeName>Malona V</ForeName>
<Initials>MV</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan. malinsug@yahoo.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Chun-Wei</ForeName>
<Initials>CW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Keqiang</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>03</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.98</RegistryNumber>
<NameOfSubstance UI="D006655">Histone Deacetylases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006655" MajorTopicYN="N">Histone Deacetylases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="Y">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>11</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>03</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>3</Month>
<Day>31</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>3</Month>
<Day>31</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19327164</ArticleId>
<ArticleId IdType="pii">1471-2229-9-37</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-9-37</ArticleId>
<ArticleId IdType="pmc">PMC2671507</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2003 Jul 25;278(30):28079-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12716909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2004 Oct;11(10):975-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15378032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2005 Oct;8(4):287-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16226704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 May;13(5):1047-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11340181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Sep;20(9):2357-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18776063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Jan;169(1):337-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15371352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Sep;165(1):399-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14504245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Dec 1;30(23):5036-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12466527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W116-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2002 Jan;9(1):3-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11841934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Apr 16;338(1):17-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15050820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Mar;185(6):1757-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12618438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):2893-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2005 Nov;14(11):2804-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16251364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Sep;44(2):167-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11117260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Bioinformatics. 2008;2008:420747</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19956698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Apr;16(4):1021-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15037732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Dec 16;21(24):6832-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12486004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jul 15;30(14):3059-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12136088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jan;146(1):149-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 24;274(52):37370-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10601307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14469-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16176989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jun 9;312(5779):1520-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16763149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Apr;25(8):2873-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15798178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(2):225-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18212027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 May 10;447(7141):213-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17450124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Int Conf Intell Syst Mol Biol. 1997;5:147-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9322029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2008 Jul;9(4):299-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18417537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng Des Sel. 2004 Jun;17(6):527-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15314210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2001 Oct;1(4):527-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11703943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 May 2;328(3):749-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12706730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Apr;17(4):1196-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Dec 14;314(5):1041-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Apr;50(2):347-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17376166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D187-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Feb 1;277(5):3350-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11726666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 23;281(25):17321-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2002 Apr 29;157(3):405-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11980916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1996 Nov;43(5):484-516</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8875863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 May 15;20(10):1283-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2008 Jul;50(7):875-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18713398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):200-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11134508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 May 18;356(4):843-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17399684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 May;37(5):501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15806101</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Taïwan</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Wu, Keqiang" sort="Wu, Keqiang" uniqKey="Wu K" first="Keqiang" last="Wu">Keqiang Wu</name>
<name sortKey="Yu, Chun Wei" sort="Yu, Chun Wei" uniqKey="Yu C" first="Chun-Wei" last="Yu">Chun-Wei Yu</name>
</noCountry>
<country name="Taïwan">
<noRegion>
<name sortKey="Alinsug, Malona V" sort="Alinsug, Malona V" uniqKey="Alinsug M" first="Malona V" last="Alinsug">Malona V. Alinsug</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003532 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003532 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19327164
   |texte=   Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19327164" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020